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Viscoelastic effects on the dynamic susceptibility of a Brownian particle in an external potential

Jean-Louis De´jardin
Centre d’Etudes Fondamentales, Groupe de Physique Mole´culaire, Universite´ de Perpignan, 52 Avenue de Villeneuve,

66860 Perpignan Cedex, France
~Received 6 April 1998!

The relaxation behavior of an assembly of noninteracting dipolar molecules acted on by an alternating
electric field and moving in a viscoelastic liquid is studied by solving the corresponding Fokker-Planck-
Kramers equation. Both inertial and viscoelastic effects are taken into account leading to an infinite hierarchy
of differential-recurrence relations where the appropriate relaxation functions are characterized by three indi-
ces. An exact expression for the complex dielectric susceptibility is found by using a matrix formulation.
Dispersion and absorption spectra together with Cole-Cole diagrams are then plotted exhibiting a resonant
structure in the FIR region due to the forcing regime impressed by the electric field. From these curves, it is
shown that inertia and elasticity are strongly coupled. This coupling effect becomes much more important as
the elastic relaxation time characterizing the interactions of the molecules with the thermal bath becomes
greater than the Debye relaxation time.@S1063-651X~98!13908-9#

PACS number~s!: 05.40.1j, 77.22.Gm, 68.10.Et
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I. INTRODUCTION

The rotational Brownian motion in a dielectric fluid con
sisting of molecules having permanent dipole moments
originally studied by Debye@1#. His theory based on Smolu
chowski’s equation@2# in configuration space only~long-
time behavior or high friction limit! led him to calculate in
the linear approximation the frequency-dependent orie
tional polarization arising from the application of an altern
ing electric field to the molecules. Unfortunately, the formu
he obtained may only be applied to angular frequencies s
that v,1/t ~t is the Debye relaxation time!. Beyond this
limit, one attains the microwave and far-infrared~FIR! re-
gions where it is necessary to include molecular inertial
fects, which means that the orientational probability dens
functionW allowing one to describe the dielectric relaxatio
process must depend not only on the angular coordinates
also on the velocity variables. This can be accomplished
solving either the Fokker-Planck-Kramers~FPK! equation
@3# or the stochastic Langevin equation@4#, both methods
giving completely equivalent results for the desired rela
ation functions. If, for the sake of mathematical simplicit
we consider rotation in plane that assumes that the molec
acted on by the electric fieldE(t) are compelled to rotate in
two dimensions~disk model!, the FPK equation is

]W

]t
1v

]W

]u
2

1

I

]V

]u

]W

]v
5

j

I S ]

]v
v1

kT

I

]2

]v2DW, ~1!

subject to the initial condition~Green’s function!

W~u,u̇;0!5d~u2u0!d~ u̇2 u̇0!,

whereW5W(u,u̇;t), u is the polar angle that specifies th
direction of the dipole axis with that of the applied elect
field, v5 u̇, I the moment of inertia of the dipole about i
rotation axis, j the rotational friction coefficient,k the
Boltzmann constant,T the absolute temperature, andd is the
Dirac-delta function. Ifm denotes the amplitude of the pe
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manent moment, the orientational potential energy acting
the molecule impressed byE(t) is

V52m•E52mE cosu. ~2!

In Eq. ~1!, the angular positionu is a slow variable and the
angular velocityv a fast variable. We note the coupling b
tween these two quantities given by the second and t
terms in the left-hand side of this equation. Correlatively,
Langevin equation~from which the FPK equation can b
extracted! governing the motion of a Brownian particle~mol-
ecule in this instance! is

u̇5v,
~3!

v̇52
j

I
v2

1

I

]V

]u
1

l~ t !

I
,

where u is now a stochastic variable, andl(t) is a white
noise driving torque~centered Gaussian variable! due to the
Brownian motion~many collisions in the surroundings! de-
fined by

l~ t !50,
~4!

l~ t1!l~ t2!52jkTd~ t12t2!.

In Eq. ~4!, the overbar represents a statistical average ove
assembly of particles all starting with the same initial con
tions at timet. By using Eq.~3! as well as Eq.~1!, we work
in the Markovian limit @5#, i.e., in the situation where the
stochastic damping torqueM has the following form:

M52jE
0

t

v~ t8!d~ t2t8!dt852jv~ t !. ~5!

From the second relation of Eq.~4!, we readily have

jkT5E
0

`

l~ t !l~0!dt,
2808 © 1998 The American Physical Society
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PRE 58 2809VISCOELASTIC EFFECTS ON THE DYNAMIC . . .
which clearly shows the interaction of the Brownian partic
with its thermal environment. The friction coefficient has
constant~static! value so that the noise correlation time re
resented by the area under the curve of the normalized n
torque autocorrelation function is vanishingly small cor
sponding to a memory-free process.

In what follows, we shall consider the Brownian motio
of a particle embedded in a viscoelastic dielectric fluid
constituting a non-Markovian system. This approach see
to be more realistic for describing relaxation phenomena
condensed matter in general and liquids in particular@6#.
Recently, considerable efforts have been devoted to the s
of the dynamics of activated rate processes@7–10# based on
a non-Markovian theory with memory friction. All the re
sults so obtained refer to the remarkable and pioneering
per of Kramers@11# and are related to the calculation of th
escape rate of a particle over a potential barrier. The in
ested reader may find many references on the subject in
view articles @12,13#. More recently, Volkov and Leonov
@14# have developed a theory of non-Markovian translatio
Brownian motion in a viscoelastic fluid and established
time evolution of the probability distribution function of
Brownian particle in terms of its position, velocity, and a
celeration. Raıˇkher and Rusakov@15#, on the other hand
have studied the dynamic susceptibility of a magnetic s
pension in a viscoelastic liquid carrier by deriving a stoch
tic Langevin equation in which appear two terms contain
the third and the second derivatives with respect to time
the angular variableu, namely, û and (1/tM) ü, wheretM

denotes a typical stress relaxation time.
In previous papers@16–18#, we have already studied th

nonlinear dielectric relaxation as well as the dynamic K
effect by including molecular inertia only. The main purpo
of this work is to construct a FPK equation in two dime
sions taking into account both inertial and elastic effects w
a view to calculating the dielectric absorption of an assem
of noninteracting dipolar molecules in a viscous and ela
fluid. To accomplish this, we shall start from the generaliz
Langevin equation@19# containing a colored noise term an
show that the orientational probability distribution functio
of the underlying FPK equation will depend now on thr
variables in phase space rather than two, namely,W
5W(u,u̇,Z;t). Therefore, we shall be led to define thr
time scales, the Debye relaxation timet5j/(kT), the fric-
tion timetF5I /j, and the elastic timetel . Hence, after hav-
ing established an exact expression for^cosu&(t) the expec-
tation value of the first Legendre polynomial characteristic
dielectric relaxation, we shall see how the relaxation spe
in the FIR are modified according to the relative value
each of these times in comparison with the two others.

II. DERIVATION OF THE VISCOELASTIC
FOKKER-PLANCK EQUATION

If viscoelastic effects take place in a dielectric liqu
acted on by an alternating electric field of the formE(t)
5E0 cosvt, the motion of a molecule may be described
replacing Eq.~3! with the generalized Langevin equation
ise
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u̇5v,
~6!

v̇52
1

I

]V

]u
2E

0

t

X~ t12t2!v~ t2!dt21
L~ t !

I
,

whereX(t) is the memory friction kernel andL(t) a colored
noise torque@20# arising from the thermal bath such that

L~ t !50 ~zero mean value!,
~7!

L~ t1!L~ t2!5IkTX~ t12t2!.

The second relation in Eq.~7! obtained from the fluctuation
dissipation theorem indicates thatL(t1) andL(t2) are cor-
related with a correlation time different from zero.

If we choose for the friction kernel an exponentially d
caying function with time constanttel such that

X~ t !5
z

I tel
exp~2t/tel!, ~8!

Eq. ~6! becomes

u̇5v,

v̇52
1

I

]V

]u
1Z, ~9!

Ż52
1

tel
Z2

j

I tel
v1

h~ t !

I
,

whereZ is a new variable having the dimensions of an a
celeration and standing for the elastic nature of the medi
the time evolution of which governs the dynamics of t
particle interacting with the thermal bath, andh(t) is a white
Gaussian noise satisfying the classical relations

h~ t !50,
~10!

h~ t1!h~ t2!52~jkT/tel
2 !d~ t12t2!.

Note that the prefactorj/(I tel) in Eq. ~8! has this form in
order to ensure the correct dimensions of units. From the
of relations in Eq.~9!, it is shown that the non-Markovian
process described by Eq.~6! can be reduced to a Marko
process@21–23# containing an extra variable~Z in this in-
stance!. This is completely equivalent to the Mori@24# rep-
resentation of the Laplace transform ofX(t) in the form of a
continued-fraction expansion

X̃~s!5
D1

2

s1l11
D2

2

s1l21D3
2

�

1
Dn

2

s1X̃n~s!
,

~11!

by truncating it at the first convergent~Dn
250 for n>2!,

namely,
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X̃~s!5
D1

2

s1l1
, ~12!

with D1
25j/(I tel) andl151/tel .

At this stage, it is easy to derive the viscoelastic FP eq
tion associated with the Langevin equation@Eq. ~9!#. Denot-
ing by W(u,u̇,Z;t) the new orientational probability densit
function, we have~x15u,x25 u̇,x35Z!

]W

]t
52(

i
F ]

]xi
Di

~1!~x1 ,x2 ,x3!GW
1(

i , j
F ]2

]xi]xj
Di j

~2!~x1 ,x2 ,x3!GW, ~13!

whereDi
(1) and Di j

(2) are the drift and diffusion coefficient
@3#, respectively, such that

D1
~1!5v, D2

~1!52
1

I

]V

]u
1Z, D3

~1!52
1

tel
Z2

j

I tel
v,

D11
~2!5D22

~2!5D12
~2!5D21

~2!5D13
~2!5D31

~2!5D23
~2!5D32

~2!50,

D33
~2!5

jkT

I 2tel
2 . ~14!

and hence

]

]t
W~u,u̇,Z;t !5LW~u,u̇,Z;t !, ~15!

where

L52
]

]u
u̇1

]

]u̇
S 1

I

]V

]u
2ZD 1

]

]Z
S j

I tel

u̇1
1

tel

ZD
1

jkT

I 2tel
2

]2

]Z2

is the appropriate Liouville operator.
Note that we have a new coupling effect betweenu̇ andZ

in addition to that betweenu and u̇, which is only present in
the Markov limit. Defining the generalized potentialU asso-
ciated with the three variablesu, u̇, andZ by

U~u,u̇,Z!5V~u!1
1

2
I u̇21

1

2

telI
2

j
Z2, ~16!

the stationary value ofW at equilibrium obeying a Maxwell-
Boltzmann distribution is simply

W~u,u̇,Z!5C expF2
U~u,u̇,Z!

kT G , ~17!

whereC is a normalization constant

C51Y E E E W~u,u̇,Z!du du̇ dZ.
a-

III. MATRIX FORMULATION

Equation ~15! gives the time evolution ofW in phase
space enlarged to a third variableZ, which allows us to con-
sider the Brownian motion of the molecule moving in th
viscoelastic fluid as a Markov process in this space. Mo
over, this equation is subject to the following initial cond
tion:

W~u,u̇,Z;0!5d~u2u0!d~ u̇2 u̇0!d~Z2Z0!. ~18!

Our method for solving Eq.~15! rests on the same procedu
as that we have developed in our previous works@16,18# on
dielectric relaxation including inertial effects only. Follow
ing Sack @25#, we take the Fourier transform ofW in
velocity-elasticity space, which yields

F~u,u,v,t !5E
2`

1`E
2`

1`

W~u,u̇,Z;t !

3exp@2 i ~uu̇1vZ!#du̇ dZ

5^exp@2 i ~uu̇1vZ!#&, ~19!

where the angular brackets represent an ensemble ave
and setting

C~u,u,v,t !5expS kT

2I
u21

jkT

2I 2tel
v2DF~u,u,v,t !,

~20!

Eq. ~15! becomes

]C

]t
2 iu

kT

I

]C

]u
1 i

]2C

]u]u
2

1

I

]V

]u
iuC2u

]C

]v

1
j

I tel
v

]C

]u
1

1

tel
v

]C

]v
50. ~21!

We remark the presence in this equation of cross terms in
reciprocal variablesu and v illustrating the strong depen
dence of elastic effects on inertial ones. As shown in Eq.~2!,
the potential energyV(u,t) is an even periodic function ofu
so that we can expandC(u,u,v;t) in Fourier series

C~u,u,v,t !5 (
p52`

1`

ap~u,v,t !e2 ipu. ~22!

By substitution of Eq.~22! into Eq. ~21!, we have

]ap

]t
1pS ]ap

]u
2

kT

I
uapD2

u

2I
@mE~ap112ap21!#2u

]ap

]v

1
j

I tel
v

]ap

]u
1

1

tel
v

]ap

]v
50. ~23!

Expanding againap(u,v,t) in power series ofu andv as

ap~u,v,t !5 (
m50

`

(
n50

`

umvnbp
m,n~ t !, ~24!

where thebp
m,n(t) are the relaxation functions, we finall

arrive at
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ḃp
m,n~ t !1pF ~m11!bp

m11,n~ t !2
kT

I
bp

m21,n~ t !G
2

1

2I
mEbp11

m21,n~ t !2bp21
m21,n~ t !2~n11!bp

m21,n11~ t !

1
j

I tel
~m11!bp

m11,n21~ t !1
1

tel
nbp

m,n~ t !50. ~25!

This set of differential-recurrence equations of Brinkm
type @26# involves three indicesp, m, andn. Given a fixed
value ofp, the influence of inertial and elastic effects on t
relaxation spectra is described by varyingm and n, respec-
tively. According to the successive expansions we have u
for obtaining the relaxation functionsbp

m,n(t), it is clear that
the appropriate values for electric polarization arep561,
m5n50. Starting from Eqs.~18!, ~22!, and ~24!, we have
indeed

^cosu&~ t !5
1

2

b1
0,0~ t !1b21

0,0~ t !

b0
0,0 , ~26!

which is the quantity we require. Furthermore, we shall
strict ourselves to dynamic electro-optical responses up
the first order of the electric fieldE(t), which allows us to
seekbp

m,n(t) in the form

bp
m,n~ t !5 ~0!bp

m,n~ t !1 ~1!bp
m,n~ t !, ~27!

where the left superscript stands for the order of the per
bation field. If in Eq.~25! we putp50 and consider the zer
order perturbation corresponding to statistical equilibriu
we have

j

I tel
~m11!~0!b0

m11,n211
1

tel
n~0!b0

m,n5~n11!~0!b0
m21,n11.

~28!

For n50, we immediately find

~0!b0
m21,150 for any m value.

Then, varyingm andn in Eq. ~28! and proceeding to succes
sive iterations, it is easy to prove that

~0!b0
m,050 ~Maxwell-Boltzmann distribution of velocity!

~29!
~0!b0

0,n50 ~Maxwell-Boltzmann distribution of elasticity!,

and hence(0)b0
m,n(t) is time independent, so that

~0!b0
m,n~ t !5 ~0!b0

m,ndm,0dn,0 , ~30!

whered i j is the usual Kronecker delta symbol.
Remarking again that to the first order in the electric fie

strength all the(1)b0
m,n must vanish, in particular(1)b0

0,0

50, and that the(1)bp
m,n(t) are real functions of time, Eq

~26! reduces to

^cosu&~ t !5

~1!b1
0,0~ t !

b0
0,0 , ~31!
ed

-
to

r-

,

so that the infinite set of differential-recurrence equations
have to solve is

~1!ḃ1
m,n~ t !1F ~m11! ~1!b1

m11,n~ t !2
kT

I
~1!b1

m21,n~ t !G
1

mE

2I
~0!b0

m21,n~ t !2~n11! ~1!b1
m21,n11~ t !

1
j

I tel
~m11! ~1!b1

m11,n21~ t !1
1

tel
n ~1!b1

m,n~ t !50.

~32!

These equations can be written in matrix form by first fixi
n and varyingm from 0 to M, which yields

@Ḃ1,n
~1!#1

j

I tel
@F#@B1,n21

~1! #2~n11!@J#@B1,n11
~1! #

1@G1,n#@B1,n
~1!#5

mE

2I
@C0,n

~0!#, ~33!

where @B1,n
(1)#, @B0,n

(1)#, and @C0,n
(0)# are column matrices o

(M11) elements, and@F#, @J#, and @G1,n#(M11)3(M
11) square matrices

@B1,n
~1!#5S ~1!b1

0,n

~1!b1
1,n

~1!b1
2,n

]

~1!b1
M ,n

D , @F#5S 0 1 0 ¯ 0

0 0 2 � ]

] � � 0

] � M

0 0 ¯ ¯ 0

D ,

@J#5S 0 0 0 ¯ 0

1 0 0 � ]

0 1 � � 0

] � � � 0

0 ¯ 0 1 0

D ,

@G1,n#51
n

tel
1 0 ¯ ¯ ¯ 0

2
kT

I

n

tel
2 � ]

0 2
kT

I
� � � ]

] � � � � � ]

] � � � � 0

] � � � M

0 ¯ ¯ ¯ 0 2
kT

I

n

tel

2 ,
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@C0,n
~0!#5@J#@B0,n

~0!#, @B0,n
~0!#5S ~0!b0

0,n

~0!b0
1,n

~0!b0
2,n

]

~0!b0
M ,n

D 5 ~0!b0
0,0S dn,0

0
0
]

0

D .

~34!

By varying n now from 0 toN we can put

@B1#5S @B1,0
~1!#

@B1,1
~1!#

@B1,2
~1!#

]

@B1,N
~1! #

D , ~35!

and Eq.~33! becomes

@Ḃ1#1@A1#@B1#52
mE

2I
@C0#, ~36!

where@A1# is the viscoelastic dielectric matrix characteris
of the system under consideration, the dimension of whic
(M11)(N11)3(M11)(N11), viz.,

@A1#

51
@G1,0# 2@J# 0 ¯ 0

j

I tel
@F# @G1,1# 22@J# � ]

0
j

I tel
@F# � � 0

] � � � 2N@J#

0 ¯ 0
j

I tel
@F# @G1,N#

2 ,

and

@C0#5@J#@B0#, @B0#5S @B0,0
~0!#

@B0,1
~0!#

]

@B0,N
~0! #

D 5S @B0,0
~0!#

@0#
]

@0#

D .

~37!

As appears in Eq.~32! as well in matrices@G1,n# and @A1#,
we see that three time scales may be distinguished, nam
tel , AtFtel, andAttF, sincekT/I 5(kT/j)(j/I )51/(ttF),
andj/(I tel)51/tFtel . When viscoelasticity is taken into ac
count together with inertia, this demonstrates both resul
effects are coupled and cannot be separated.

IV. EXPRESSION FOR THE DYNAMIC SUSCEPTIBILITY

We shall solve Eq.~36! whenE(t) is an alternating elec
tric field applied at timet50. Taking the Fourier transform
of both sides of Eq.~36!, one finds
is

ly,

g

@B̃~V!#52$ iV@ I #1@A1#%21pl0@J#@B0#

3@d~v2V!1d~v1V!#, ~38!

where

@B̃~V!#5E
2`

1`

@B1~ t !#e2 iVtdt,

l05
mE0

2I
,

and @I # is the identity matrix.
So, the time evolution of@B1(t)#, which is suitable for

the viscoelastic dielectric relaxation, may be easily p
formed by inverting the terms of Eq.~38! in the time domain

@B1~ t !#5Re l0$ iv@ I #1@A1#%21@J#@B0#eivt, ~39!

where Re means ‘‘real part of.’’
In view of the calculation of̂ cosu&(t) in Eq. ~31!, which

is essentially given by(1)b1
0,0(t), it suffices to take the first

component of@B1(t)# corresponding ton50 and then to
consider the first element of the vector@B1,0

(1)# wherem50.
Hence, the only useful quantity we need to evaluate in
right-hand side of Eq.~39! is the elementa12 in the first row
and second column of the adjoint matrix of (iv@ I #1@A1#)
since@J#@B0# reduces to

@J#@B0#5 ~0!b0
0,0S 0

1
0
0
•

•

•

D . ~40!

By putting

@A1#5 iv@ I #1@A1#,

det@A1#5A~v!1 iB~v!

a12~v!5a~v!1 ib~v!,

~where det denotes ‘‘determinant of’’! we have

^cosu&~ t !5ReFl0

a12~v!

det@A1#
~cosvt1sin vt !G ,

5
l0

A21B2 @~Aa1Bb!cosvt

1~Ba2bA!sin vt#. ~41!

The electric polarizationP(t) is therefore given by

P~ t !5Nm^cosu&~ t !5Re@«0x~v!E0eivt#, ~42!
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FIG. 1. Plot of the real part of the normalized electric susceptibilityxNor8 as a function of the angular frequencyv for a251, b530, and
g51 ~case of small viscoelasticitytel /t!1!.
nd

no

Eq.
in
r as
nt.
whereN is the number of dipoles per unit volume,x(v)
5x8(v)2 ix9(v) the complex electric susceptibility, and«0
the absolute dielectric permittivity of the liquid. The real a
imaginary parts ofx~v! are

x8~v!5
Nm2

2«0I

Aa1Bb

A21B2 ,
~43!

x9~v!5
Nm2

2«0I

Ba2bA

A21B2 .

For numerical convenience, we shall rather consider the
 r-

malized expressionsxNor8 (v) and xNor9 (v), the subscript
‘‘Nor’’ standing for normalized

xNor8 ~v!5
x8~v!

x8~0!
, xNor9 ~v!5

x9~v!

x8~0!
, ~44!

wherex8~0! is the value ofx8~v! at zero frequency.
The dynamic step-on response that we have derived in

~41! deviates considerably from the simple Debye model,
the sense that such a response is strictly nonlinear insofa
both inertial and viscoelastic effects are taken into accou
FIG. 2. Plot of the imaginary part of the normalized electric susceptibilityxNor9 as a function of the angular frequencyv for a251, b530,
andg51.
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FIG. 3. Plot of the logarithm ofxNor9 ~dielectric loss! as a function of the angular frequencyv. Note the presence of a small resonant pe
practically invisible in Fig. 2. The parametersa2, b, andg have the same values as in Figs. 1 and 2.
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However, we recall that our calculation is confined to t
linear approximation in the electric field strength~first order
perturbation!.

V. DISPERSION AND ABSORPTION SPECTRA

Two series of dispersionxNor8 (v) and absorptionxNor9 (v)
spectra have been plotted by varying theS1 set of three
parameters,a5AkT/I 51/AttF, b51/tF , g51/tel , one
pertaining to small viscoelasticity, the other to moderate v
coelasticity. All these curves present resonant behavio
high frequencies, clearly identified by at least one reson
peak forxNor9 (v) that never becomes negative, and by t
-
at
nt
e

negative values attained byxNor8 (v) in these regions. As long
as elasticity and inertia remain small, the Debye-like profi
lying in the low-frequency band are practically unaffecte
the maximum ofxNor9 (v) being slightly less than 0.5 an
shifted to the right as expected when inertia is consider
The beginning of inertial and elastic effects can be detec
by the broadening of these profiles in their terminal part~low
frequency, inertia-corrected Debye theory!. This is shown in
Figs. 1 and 2 where our choice of theS1 set corresponds to
tF /t51.131023 andtel /t50.0333 (tel,t). In Fig. 2, we
note the occurrence of a relatively damped FIR peak acc
panied by an almost imperceptible second peak~strongly
damped! best viewed in Fig. 3 where a log-log scale~dielec-
FIG. 4. Cole-Cole diagram. Note the occurrence of a loop in the high-frequency region. The parametersa2, b, andg have the same
values as in Figs. 1 and 2.
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FIG. 5. Plot of the real part of the normalized electric susceptibilityxNor8 as a function of the angular frequencyv for a254, b515, and
g50.2 ~case of moderate viscoelasticitytel /t>1!.
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tric loss! has been used. We have thought interesting to
a Cole-Cole diagram as well, as illustrated in Fig. 4 in ord
to show how it deviates from the usual Debye semicircle.
low to mid frequencies, the familiar and skewed semicircle
recovered, terminated by a loop at high frequencies. Th
results have been obtained by truncating the@A1# matrix at
M5N53, which was sufficient for ensuring correct conve
gence~six significant digits! with our choice of theS1 pa-
rameter set. In Figs. 5–7, analogous curves are presented
this time with tF /t51.7731022 and tel /t51.333 (tel
.t). These values correspond to a new set of parametea,
b, g (S2) such that viscoelastic effects are much more p
ot
r
t
s
se

but

-

nounced than withS1 and manifest themselves by high
resonant peaks causing a large damping of the Debye abs
tion. This is in accordance with the results presented
Raı̌kher and Rusakov@15# for a magnetic suspension in
viscoelastic fluid@see their Fig. 1~b!# and obtained from a
quite different theoretical approach. Moreover, we can ve
the equidistance between these peaks, the maximum o
first one being far more than 0.5, about 1.12. The Cole-C
diagram presented in Fig. 8 shows how the shape of this
is affected in its early part~flattening! by the viscoelastic
strength. As angular frequency increases, the maxim
height of the arc reaches approximately 1.12, which is m
FIG. 6. Plot of the imaginary part of the normalized electric susceptibilityxNor9 as a function of the angular frequencyv for a254, b515,
andg50.2.
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FIG. 7. Plot of the logarithm ofxNor9 ~dielectric loss! as a function of the angular frequencyv. Four equidistant and resonant peaks c
be distinguished. The parametersa2, b, andg have the same values as in Figs. 5 and 6.
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more than 0.5, the well-known value obtained in a pure D
bye relaxation process. The last portion is characterized
loops reflecting the competition between the fast variableu̇
~angular velocity! and Z ~angular acceleration!. In other
words, at very high frequencies, there is duality between
ertia and elasticity, two strongly coupled physical entiti
The resonant nature of our viscoelastic system produces
monics arising from the coupling effect of the electric fie
with the molecules in the liquid, the frequency of which is
multiple of the natural frequency of the medium in the a
sence of any external perturbation. Starting from the Lan
vin equation@Eq. ~9!# written in zero electric field and aver
aging over the whole assembly of particles, we have ind
-
y

-
.
ar-

-
e-

d

^v̈~ t !&1
1

tel
^v̇~ t !&1

1

tFtel
^v~ t !&50

or

^v̈~ t !&1g^v̇~ t !&1bg^v~ t !&50, ~45!

wherebg is the natural angular frequency. This second-or
differential equation has oscillatory behavior only if the co
dition b.g/4 is filled. This is precisely the case for the va
ues chosen inS1 andS2 parameter sets. So, in the presen
of an alternating field varying at the fundamental frequen
v, resonance occurs every time thatv equals or is a multiple
FIG. 8. Cole-Cole diagram. Two arcs are apparent lying from low to mid frequencies~inertial effects!, followed by loops at high
frequencies~coupled effects of inertia and viscoelasticity!. The parametersa2, b, andg have the same values as in Figs. 5 and 6.
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of bg. The values ofM and N needed forS2 until conver-
gence is achieved areM516, N512, i.e., a 2213221 @A1#
matrix.

VI. CONCLUSIONS

We have derived a complete solution for the dielect
response arising from the sudden application of an alter
ing electric field to an assembly of dipole molecules mov
in a viscoelastic liquid. Starting from the generalized Lang
vin equation with memory kernel, which is in essence no
Markovian, we have defined a three-dimensional Mark
process in the variablesu, u̇, andZ and established the un
derlying viscoelastic FPK equation. In order to solve th
equation, we have used a matrix formulation in the sa
manner as that previously employed for Kerr effect rela
ation including inertia only@16,18#. This procedure leads to
set of differential-recurrence equations of Brinkman ty
with three indices,p, m, andn, whence an expression for th
complex dynamic susceptibility is established to first orde
the electric field strength. By varying the size of the v
.

t-

-
-
v

e
-

n
-

coelastic dielectric matrix@A1#, we can calculate the nonlin
ear step-on dielectric response for any values ofa, b, andg
accounting for the effect of coupling of molecular inertia a
viscoelasticity on the orientational relaxation in liquids.

This model, although simplified, gives nevertheless int
esting results on the resonant structure of the peaks in
FIR range. As recently pointed out@27#, a better description
of molecular interactions with their thermal environme
would consist in considering dielectric absorption not on
due to dipole permanent moments but also to induced dip
moments. This is possible with our approach by calculat
^cosu&(t) up to the third order inE0

3 at least, but the math
ematical task becomes more complicated and the nume
analysis longer~treatment of huge matrices!. Moreover, our
theoretical procedure cannot be compared effectively w
the itinerant oscillator model@28–31# where a truncation of
the Mori continued fraction at its second convergent
needed. The corresponding orientational probability den
function W would depend therefore on four variables, whi
would lead to a Brinkman equation with four indices.
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