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Viscoelastic effects on the dynamic susceptibility of a Brownian particle in an external potential
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The relaxation behavior of an assembly of noninteracting dipolar molecules acted on by an alternating
electric field and moving in a viscoelastic liquid is studied by solving the corresponding Fokker-Planck-
Kramers equation. Both inertial and viscoelastic effects are taken into account leading to an infinite hierarchy
of differential-recurrence relations where the appropriate relaxation functions are characterized by three indi-
ces. An exact expression for the complex dielectric susceptibility is found by using a matrix formulation.
Dispersion and absorption spectra together with Cole-Cole diagrams are then plotted exhibiting a resonant
structure in the FIR region due to the forcing regime impressed by the electric field. From these curves, it is
shown that inertia and elasticity are strongly coupled. This coupling effect becomes much more important as
the elastic relaxation time characterizing the interactions of the molecules with the thermal bath becomes
greater than the Debye relaxation tini81063-651X98)13908-9

PACS numbegps): 05.40:+j, 77.22.Gm, 68.10.Et

I. INTRODUCTION manent moment, the orientational potential energy acting on
the molecule impressed IB(t) is
The rotational Brownian motion in a dielectric fluid con-
sisting of molecules having permanent dipole moments was V=—p E=—puE cosé. @)
originally studied by Deby¢1]. His theory based on Smolu-

chowski's equatiori2] in configuration space onlfiong- angular velocityw a fast variable. We note the coupling be-

time behavior or high friction limjtled him to calculate in g . .
: S I : tween these two quantities given by the second and third
the linear approximation the frequency-dependent orienta-

. S hy o erms in the left-hand side of this equation. Correlatively, the
tional polarization arising from the application of an alternat-

ing electric field to the molecules. Unfortunately, the formulal‘angevln equatior(from which the FPK equation can be

he obtained may only be applied to angular frequencies suc%XtraCted governing the motion of a Brownian partideol-

that w<1/7 (7 is the Debye relaxation timeBeyond this ccule in this instangeis

In Eq. (1), the angular positio is a slow variable and the

limit, one attains the microwave and far-infraréelR) re- 9= w

gions where it is necessary to include molecular inertial ef- ’ 3)
fects, which means that the orientational probability density ¢ 1oV A(D)
function W allowing one to describe the dielectric relaxation w=— T T2 T

process must depend not only on the angular coordinates but I a0 I
also on the velocity variables. This can be accomplished by,here ¢ is now a stochastic variable andt) is a white

solving either the Fokker-Planck-Krame(BPK) equation  hgise driving torqueécentered Gaussian variablue to the
[3] or the stochastic Langevin equatigd], both methods oy njan motion(many collisions in the surroundingsle-
giving completely equivalent results for the desired relax-g

ation functions. If, for the sake of mathematical simplicity, fined by

we consider rotation in plane that assumes that the molecules (1) =0,

acted on by the electric field(t) are compelled to rotate in @)
two dimensiongdisk mode}, the FPK equation is Nt (ty)=2EKTS(t;—t,).

In Eq. (4), the overbar represents a statistical average over an
assembly of particles all starting with the same initial condi-
tions at timet. By using Eq.(3) as well as Eq(1), we work
subject to the initial conditioriGreen’s function in the Markovian limit[5], i.e., in the situation where the
stochastic damping torqud has the following form:

W  IW 1(?V07W_§((? KT &2

S — — R + [R—
&ww | dw?

90 13090 )W' @)

W(0,6;0)= 86— 65) 86— 6p),
t

whereW= W(H,é;t), @ is the polar angle that specifies the M= —fJOw(t )t=1)dt'=—La(t). ©
direction of the dipole axis with that of the applied electric _ _
field, o= 6, | the moment of inertia of the dipole about its From the second relation of E(), we readily have
rotation axis, & the rotational friction coefficientk the .
Boltzmann constanfl the absolute temperature, afds the ng:f MO (0)dt,
Dirac-delta function. Ifu denotes the amplitude of the per- 0
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which clearly shows the interaction of the Brownian particle 0=,

with its thermal environment. The friction coefficient has a (6)
constant(statig value so that the noise correlation time rep- _ 19V t A(t)
resented by the area under the curve of the normalized noise ey fox(tl_tz)w(tz)dtz+ -

torque autocorrelation function is vanishingly small corre-

sponding to a memory-free process. whereX(t) is the memory friction kernel and (t) a colored

In what follows, we shall consider the Brownian motion noise torqug20] arising from the thermal bath such that
of a particle embedded in a viscoelastic dielectric fluid so

constituting a non-Markovian system. This approach seems A(t)=0 (zero mean value @
to be more realistic for describing relaxation phenomena of
condensed matter in general and liquids in particligr A(t)A(ty)=TKTX(t1—t5).

Recently, considerable efforts have been devoted to the stu

of the dynamics of activated rate procesges10| based on

a non-Markovian theory with memory friction. All the re-

sults so obtained refer to the remarkable and pioneering p It h for the friction k | ially de-

per of Kramerg11] and are related to the calculation of the ' we choose for the Iriction kernel an exponentially de
: . . .~ caying function with time constant, such that

escape rate of a particle over a potential barrier. The inter-

ested reader may find many references on the subject in re- g

view articles[12,13. More recently, Volkov and Leonov X(t)= T exp(—t/7g), (8

[14] have developed a theory of non-Markovian translational el

Brownian motion in a viscoelastic fluid and established thegq. (6) becomes

time evolution of the probability distribution function of a

d

'the second relation in Eq47) obtained from the fluctuation-
dissipation theorem indicates tha(t;) and A(t,) are cor-
Jelated with a correlation time different from zero.

Brownian particle in terms of its position, velocity, and ac- ézw,
celeration. Raher and Rusakoy15], on the other hand,

have studied the dynamic susceptibility of a magnetic sus- : Y

pension in a viscoelastic liquid carrier by deriving a stochas- | 96

tic Langevin equation in which appear two terms containing

the third and the second derivatives with respect to time of -1 3 7(t)
the angular variable, namely, # and (1ky)6, where 7y, Z== Tel . Trg 7 1

denotes a typical stress relaxation time.
In previous paperfl6—18, we have already studied the whereZ is a new variable having the dimensions of an ac-

nonlinear dielectric relaxation as well as the dynamic Kerrceleration and standing for the elastic nature of the medium,

effect by including molecular inertia only. The main purposethe time evolution of which governs the dynamics of the

of this work is to construct a FPK equation in two dimen- Particle interacting with the thermal bath, ant) is a white

sions taking into account both inertial and elastic effects withGaussian noise satisfying the classical relations

a view to calculating the dielectric absorption of an assembly

of noninteracting dipolar molecules in a viscous and elastic 7(H)=0, (10)
fluid. To accomplish this, we shall start from the generalized —_ 2 _
Langevin equatioi19] containing a colored noise term and 7(t1) 7(tz) =2(ek T/ 7e) 5t~ 1),

show that the_orientational p_robab_ility distribution function \gte that the prefactog/(17) in Eq. (8) has this form in

of the underlying FPK equation will depend now on threeqger to ensure the correct dimensions of units. From the set
variables in phase space rather than two, nam&ly, of relations in Eq.(9), it is shown that the non-Markovian
=W(#0,6,Z;t). Therefore, we shall be led to define three process described by E¢6) can be reduced to a Markov
time scales, the Debye relaxation time £/(kT), the fric-  procesg21-23 containing an extra variabl€ in this in-

tion time 7 =1/¢, and the elastic time,,. Hence, after hav- stancé. This is completely equivalent to the Mdr4] rep-

ing established an exact expression foos)(t) the expec- resentation of the Laplace transformXt) in the form of a
tation value of the first Legendre polynomial characteristic ofcontinued-fraction expansion

dielectric relaxation, we shall see how the relaxation spectra

2
in the FIR are modified according to the relative value of ;((s)= Al
each of these times in comparison with the two others. A2
sth\+————
S+N\,+ A5
(11)
Il. DERIVATION OF THE VISCOELASTIC .
FOKKER-PLANCK EQUATION Aﬁ
If viscoelastic effects take place in a dielectric liquid S+ Xn(S)

acted on by an alternating electric field of the foEa{t)
=E, coswt, the motion of a molecule may be described byby truncating it at the first convergemﬁ=0 for n=2),
replacing Eq(3) with the generalized Langevin equation = namely,
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i Il. MATRIX FORMULATION
X(s)— (12 : . . . .
S+A\g Equation (15) gives the time evolution ofV in phase
space enlarged to a third variatdewhich allows us to con-
with A2=¢/(17¢) and\,=1/7g. sider the Brownian motion of the molecule moving in the

At this stage, it is easy to derive the viscoelastic FP equaviscoelastic fluid as a Markov process in this space. More-
tion associated with the Langevin equatidty. (9)]. Denot-  over, this equation is subject to the following initial condi-
ing by W(#6,6,Z;t) the new orientational probability density tion:

function, WehaVX—HX—ax =7 . .
1= 0% 0,x5=2) W(6,0,Z;0)=8(6— 00) (60— 00)S(Z—Zy).  (18)

=— E D(l)(xl X5,X3) W Our method for solving Eq(15) rests on the same procedure
X as that we have developed in our previous wqd®,18 on
dielectric relaxation including inertial effects only. Follow-
+2 (2)(xq,X2,X3) | W, (13) ing Sack[25], we take the Fourier transform o in
IX;9X; velocity-elasticity space, which yields

whereD™ andD{?) are the drift and diffusion coefficients
[3], respectively, such that

d(6,u,v,t)= f f W(0,6,Z;t)

D(ll):w, D(zl):_}ﬂ Z Dgl)z—iZ—iw, Xexg —i(u6+vZ)]dg dz
I 26 oo 7l —(ex —i(U0+v2)]), (19
D{?=D%=D{3=D%=DF=D=D% =Dy =0, where the angular brackets represent an ensemble average,
and setting
D2 —ngT (14 kT EkT
5= EA W(6,u,0,t)=exg = U+ —— 02| D(6,u,0,t),
20 2| Tel
and hence (20
9 _ _ Eq. (15) becomes
gt W(0.0,2,0)=LW(6,6,2:1), (19 AR S S T |
YT e M Guas Tae WYY Gy
where
P N 1 v 0 1)
g - 9 [1aVv d 1 _U_ Y
- g 2228 s i0+_z I7 Tel OV
90 90 \1 96 92 \17e Tel We remark the presence in this equation of cross terms in the
ng 92 reciprocal variabless and v illustrating the strong depen-
— dence of elastic effects on inertial ones. As shown in(2y.
12 Tel 24 the potential energy/(6,t) is an even periodic function of
so that we can exparndf (6,u,v;t) in Fourier series
is the appropriate Liouville operator.
Note that we have a new coupling effect betwekandZ I _
in addition to that betweefi and 6, which is only present in WV(6,u,v,t)= Z ap(u,v,t)e*'p”. (22
p=—x

the Markov limit. Defining the generalized potentidlasso-

ciated with the three variable 6, andZ by By substitution of Eq(22) into Eq.(21), we have

. 1 . T IZ
_ g2 el da da, KT u da
U(6,6.2)=V(0)+ 5 16°+ 5 —— 2% (16) —C Pl oy Uy |~ oy [E(@pa—ap-1)]-u ﬂv"
the stationary value diV at equilibrium obeying a Maxwell- & oda, 1 Jda,
Boltzmann distribution is simply + Tra? au T E o 0 (23
. ] 0,29,2 Expanding agaim,(u,v,t) in power series ofi andv as
W(0,6,Z)=Cexp{—(T)}, 7 Expanding agaimy(uv.0) inp v
m_ . npm,n

whereC is a normalization constant (U, 1) = 20 nZ‘ U by (1), (24

: . where theb’""(t) are the relaxation functions, we finally
— p )
C—l/fff W(6,60,2)d6 do dZ. arrive at
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: kT
by () + p| (m+1)bg™ +(t) — == by (1)

1
— o7 #EBG (D) = bRm (D) = (n+ Dby (D)

p

1
+ Ii (M+1)by "~ 4(t) + — nbI""(t)=0.
Tel Tel

This set of differential-recurrence equations of Brinkman
type [26] involves three indicep, m, andn. Given a fixed
value ofp, the influence of inertial and elastic effects on the
relaxation spectra is described by varyimgand n, respec-

(29

so that the infinite set of differential-recurrence equations we
have to solve is

: kT
W) +| (m+1) Wby () — - VoI (D)

E
+ l;_l (O)b?_l’n(t)—(n+ 1) (1)bT—1,n+l(t)
i (1)jym+1n-1 i (1)pm,n _
+ = (m+1) Lp] )+ —n OpM"(t)=0.
ITe| Tel
(32

tively. According to the successive expansions we have used

for obtaining the relaxation functiorts)""(t), it is clear that

the appropriate values for electric polarization are =1,

m=n=0. Starting from Eqs(18), (22), and (24), we have

These equations can be written in matrix form by first fixing
n and varyingm from 0 to M, which yields

indeed :
(cos 6y (1) = - b2(t) +b2(t) . [BYn)+ - [FIBY 1]~ (n+ DB
cosO)(t)y=s——50——, 26
2 by
. . _ ) LE
which is the quantity we require. Furthermore, we shall re +[Gl,n][B(11n)]= »= [Cg%) , (33

strict ourselves to dynamic electro-optical responses up to
the first order of the electric fiel&(t), which allows us to

seekby""(t) in the form

b "(1)=Ob"(1) + Vb "(1),

(27)

2|

where [B{})], [B{Y], and [C{)] are column matrices of
(M+1) elements, andF], [J], and [G;,](M+1)X(M
+1) square matrices

where the left superscript stands for the order of the pertur-

bation field. If in Eq.(25) we putp=0 and consider the zero
order perturbation corresponding to statistical equilibrium,

we have

£

Tel Tel

For n=0, we immediately find

Opf~+1=0 for any m value.

Then, varyingm andn in Eq. (28) and proceeding to succes-

sive iterations, it is easy to prove that

1
(m+1)@bg " — n@bg"=(n+1)@bg =M,

(28)

©p%=0 (Maxwell-Boltzmann distribution of velocity

(29

©p3"=0 (Maxwell-Boltzmann distribution of elasticily

and henceé®b""(t) is time independent, so that
(O)bron,n(t):(O)bgl,n m,Oan,Oy

where g;; is the usual Kronecker delta symbol.

Remarking again that to the first order in the electric field [Ginl= ) )

(30

strength all theMbT™" must vanish, in particulaf®b3°

=0, and that thetMb[*"(t) are real functions of time, Eq.

(26) reduces to

by 0)

(cos&}(t)=bT,
0

(31)

(10N o1 0 --- 0
1 .
(l)bi,ﬂ 0O 0 2
[Bal=| @bi" |, [Fl=| : 01,
: M
(LpM.n
1 0 0 0
0O O 0
0 :
[31=| 0 0],
: 0
0 0O 1 o0
n
— 1 0 0
Tel
kT n
- — 2
| Te|
kT
0 _
|
0
. M
kT n
0 0O —-—— —
| ’Te|
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(O)bgvn 5n0
Opgn 0
[COI=L3I(BGR].  [BGnl=| "bg" | =bg% O
OpMn 0
(34

By varying n now from 0 toN we can put

[Bis]
[BS}
[Bi1=| [B3] |, (35)
[BIX]
and Eq.(33) becomes
- E
[Bil+[ALB) =~ 55 [Gol, (36)

JEAN-LOUIS DEJARDIN
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[B(Q)]=—{iQ[1]+[A]} "2 o[ I][ Bo]
X[8(w— Q)+ 8(w+Q)], (38)

where
[B()]= f_:[81<t>]e-imdt,

mEo
TR

and[1] is the identity matrix.

So, the time evolution of B,(t)], which is suitable for
the viscoelastic dielectric relaxation, may be easily per-
formed by inverting the terms of E€38) in the time domain

[Bi(H)]=Reofiw[1]+[AL]} I Bole', (39
where Re means “real part of.”

In view of the calculation of cosé)(t) in Eq. (31), which
is essentially given byVb%Y(t), it suffices to take the first

where[ A ] is the viscoelastic dielectric matrix characteristic component of B;(t)] corresponding tm=0 and then to

of the system under consideration, the dimension of which IS onsider the first element of the vec(®

(M+1)(N+1)X (M+1)(N+1), viz.,

[A]
[Gia  —[J] 0 0
%[F] (G —2[J]
¢ . .
= o P . 0
—N[J]
3
0 e O E[F] [Gl,N]
and
[B%] (B
B 0
[Col=[31[Bo].  [Bol= [?'1 = [;]
[BN] [0]
37

As appears in Eq32) as well in matrice§ G, ,] and[A,],

we see that three time scales may be distinguished, namely,

Tel, NTeTe, andy/77, sincekT/1=(KT/&)(&N)=1/(77E),

and ¢/ (1 7)) = /7 7o) When viscoelasticity is taken into ac-
count together with inertia, this demonstrates both resulting

effects are coupled and cannot be separated.

IV. EXPRESSION FOR THE DYNAMIC SUSCEPTIBILITY

We shall solve Eq(36) whenE(t) is an alternating elec-
tric field applied at time=0. Taking the Fourier transform

of both sides of Eq(36), one finds

31 wherem=0.
Hence, the only useful quantity we need to evaluate in the
right-hand side of Eq(39) is the elemené,, in the first row
and second column of the adjoint matrix afw(1]+[A4])
since[J][ By] reduces to

[I1[ Bo]=Vbg?° (40)

0
1
0
0
By putting
[A]=To[I]+[A],
def A;]=A(w)+iB(w)
apw)=a(w)+ib(w),
(where det denotes “determinant ofwe have

ajlw) .
(cos 0)(t)=Re \g del A] (cos wt+sin wt) |,

A
:AZTOBZ [(Aa+Bb)cos wt
+(Ba—bA)sin wt]. (41
The electric polarizatiofP(t) is therefore given by

P(t)=Nu(cos 6)(t) =R eox(w)Eee'®'],  (42)
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-3 -2 -1 \//r/“i 2

log,,w (w inrad/ps)

FIG. 1. Plot of the real part of the normalized electric susceptibility, as a function of the angular frequeneyfor o?=1, =30, and
vy=1 (case of small viscoelasticity, /7<1).

where NV is the number of dipoles per unit volumg(w) malized expressiong ,(») and x{,(®), the subscript

=x'(0)—ix"(o) the complex electric susceptibility, aed ~ “Nor” standing for normalized

the absolute dielectric permittivity of the liquid. The real and

imaginary parts o are , ”
Niu? Aa+Bb Aot @570y ANen @I 3 7(0) !

X (0)= ool AZHBZ"

(43 where x'(0) is the value ofy’(w) at zero frequency.
. Nu? Ba—bA The dynamic step-on response that we have derived in Eq.
X'(w)= 2eol AZ+BZ° (41) deviates considerably from the simple Debye model, in

the sense that such a response is strictly nonlinear insofar as
For numerical convenience, we shall rather consider the noboth inertial and viscoelastic effects are taken into account.

-3 -2 -1 1 2

log,,w (w inrad/ps)

FIG. 2. Plot of the imaginary part of the normalized electric susceptibi{{ty as a function of the angular frequeneyfor «?=1, =30,
and y=1.
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log,,w (w inrad/ps)

-3 -2 -1 1

-6 L

FIG. 3. Plot of the logarithm ofy,, (dielectric los$ as a function of the angular frequeneyNote the presence of a small resonant peak
practically invisible in Fig. 2. The parametesg, B, and y have the same values as in Figs. 1 and 2.

However, we recall that our calculation is confined to thenegative values attained by}, () in these regions. As long
linear approximation in the electric field strendfhist order a5 elasticity and inertia remain small, the Debye-like profiles
perturbation. lying in the low-frequency band are practically unaffected,
the maximum ofy},(w) being slightly less than 0.5 and
V. DISPERSION AND ABSORPTION SPECTRA shifted to the right as expected when inertia is considered.
The beginning of inertial and elastic effects can be detected
Two series of dispersiofy,(w) and absorptionyy,(®) by the broadening of these profiles in their terminal gkt
spectra have been plotted by varying t82 set of three frequency, inertia-corrected Debye thepr¥his is shown in
parameters,a= KT/l =1/\r7e, B=1/m¢, y=1/r¢, One Figs. 1 and 2 where our choice of 4 set corresponds to
pertaining to small viscoelasticity, the other to moderate Vvis-r. /7=1.1x 103 and 7/ 7=0.0333 (r< 7). In Fig. 2, we
coelasticity. All these curves present resonant behavior afote the occurrence of a relatively damped FIR peak accom-
high frequencies, clearly identified by at least one resonanganied by an almost imperceptible second péstkongly
peak for xyo(w) that never becomes negative, and by thedamped best viewed in Fig. 3 where a log-log scétielec-

L
0.2 0.4 0.6 0.8 1

’
X Nor

FIG. 4. Cole-Cole diagram. Note the occurrence of a loop in the high-frequency region. The paramieigrsind y have the same
values as in Figs. 1 and 2.
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-0.2

log, 0w (w inrad/ps)

FIG. 5. Plot of the real part of the normalized electric susceptibility, as a function of the angular frequeneyfor «?=4, =15, and
v=0.2 (case of moderate viscoelasticity/7=1).

tric los9 has been used. We have thought interesting to plohounced than witfS1 and manifest themselves by higher

a Cole-Cole diagram as well, as illustrated in Fig. 4 in orderresonant peaks causing a large damping of the Debye absorp-
to show how it deviates from the usual Debye semicircle. Attion. This is in accordance with the results presented by
low to mid frequencies, the familiar and skewed semicircle isRakher and Rusakoy15] for a magnetic suspension in a
recovered, terminated by a loop at high frequencies. Thesgscoelastic fluid[see their Fig. (b)] and obtained from a
results have been obtained by truncating tAg] matrix at  quite different theoretical approach. Moreover, we can verify
M =N=3, which was sufficient for ensuring correct conver-the equidistance between these peaks, the maximum of the
gence(six significant digity with our choice of theS1 pa-  first one being far more than 0.5, about 1.12. The Cole-Cole
rameter set. In Figs. 5—7, analogous curves are presented, lidihgram presented in Fig. 8 shows how the shape of this plot
this time with 7e/7=1.77x102 and 7/7=1.333 (ry is affected in its early partflattening by the viscoelastic

> 7). These values correspond to a new set of parameters strength. As angular frequency increases, the maximum
B, v (S2) such that viscoelastic effects are much more proheight of the arc reaches approximately 1.12, which is much

It

-3 -2 -1 1 2

log,,w (w inrad/ps)

FIG. 6. Plot of the imaginary part of the normalized electric susceptibi{ty as a function of the angular frequeneyfor a?=4, =15,
and y=0.2.
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log,,w (w inrad/ps)

A s L A

-1.5 -1 -0.5 0.5 1 1.5

-4 |

FIG. 7. Plot of the logarithm ok}, (dielectric los$ as a function of the angular frequeney Four equidistant and resonant peaks can
be distinguished. The parameter$, B, andy have the same values as in Figs. 5 and 6.

more than 0.5, the well-known value obtained in a pure De- 1 1
bye relaxation process. The last portion is characterized by (o(t)+ — (o) + —(o(1))=0

. . . Tel TETel
loops reflecting the competition between the fast variabiles
(angular velocity and Z (angular acceleration In other  gr
words, at very high frequencies, there is duality between in-
ertia and elasticity, two strongly coupled physical entities. (0(t))+ W w(t))+ By(w(t))=0, (45
The resonant nature of our viscoelastic system produces har-
monics arising from the coupling effect of the electric field wheregBy is the natural angular frequency. This second-order
with the molecules in the liquid, the frequency of which is adifferential equation has oscillatory behavior only if the con-
multiple of the natural frequency of the medium in the ab-dition 8>+/4 is filled. This is precisely the case for the val-
sence of any external perturbation. Starting from the Langeues chosen ii81 andS2 parameter sets. So, in the presence
vin equation[Eq. (9)] written in zero electric field and aver- of an alternating field varying at the fundamental frequency
aging over the whole assembly of particles, we have indeed, resonance occurs every time thaequals or is a multiple

>
X Nor

FIG. 8. Cole-Cole diagram. Two arcs are apparent lying from low to mid frequeficiegial effects, followed by loops at high
frequenciegcoupled effects of inertia and viscoelastigitfhe parametera?, B, andy have the same values as in Figs. 5 and 6.
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of Bv. The values oM andN needed forS2 until conver-  coelastic dielectric matrikA;], we can calculate the nonlin-
gence is achieved afd =16, N=12, i.e., a 22k221[A,] ear step-on dielectric response for any value&,g8, andy
matrix. accounting for the effect of coupling of molecular inertia and
viscoelasticity on the orientational relaxation in liquids.
VI. CONCLUSIONS This model, although simplified, gives nevertheless inter-

. . . ._esting results on the resonant structure of the peaks in the
We have derived a complete solution for the dielectric 9 P

response arising from the sudden application of an aIternaEIR range. As recently pointed o[27], a better description

ing electric field to an assembly of dipole molecules movingOf molecular interactions with their thermal environment

in a viscoelastic liquid. Starting from the generalized Lange-WOUId consist in considering dielectric absorption not only

vin equation with memory kernel, which is in essence non-due to dipole permanent moments but also to induced dipole

Markovian, we have defined a three-dimensional Markoynoments. This is possible with our approach by calculating
process in the variable§ 6, andZ and established the un- (Cos6)(t) up to the third order irEj at least, but the math-
derlying viscoelastic FPK equation. In order to solve thisematical task becomes more complicated and the numerical
equation, we have used a matrix formulation in the samenalysis longeftreatment of huge matricesMoreover, our
manner as that previously employed for Kerr effect relax-theoretical procedure cannot be compared effectively with
ation including inertia only16,18. This procedure leads to a the itinerant oscillator modé¢R8-31 where a truncation of
set of differential-recurrence equations of Brinkman typethe Mori continued fraction at its second convergent is
with three indicesp, m, andn, whence an expression for the needed. The corresponding orientational probability density
complex dynamic susceptibility is established to first order infunction W would depend therefore on four variables, which
the electric field strength. By varying the size of the vis-would lead to a Brinkman equation with four indices.
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